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ABSTRACT 
  
The Off-Plane Grating Rocket Experiment (OGRE) will greatly advance the current capabilities of soft X-ray grating 
spectroscopy and provide an important technological bridge towards future X-ray observatories. The OGRE sounding 
rocket will fly an innovative X-ray spectrograph operating at resolving powers of R ~ 2000 and effective areas > 100 
cm2 in the 0.2–1.5 keV bandpass. This represents a factor of two improvement in spectral resolution over currently 
operating instruments. OGRE will observe the astrophysical X-ray calibration source Capella, which has a line-
dominated spectrum and will showcase the full capabilities of the OGRE spectrograph. We outline the mission design 
for OGRE and provide detailed overviews of relevant technologies to be integrated into the payload, including slumped 
glass mirrors, blazed reflection gratings customized for the off-plane mount, and electron-multiplying CCDs (EM-
CCDs). The OGRE mission will bring these components to a high technology readiness level, paving the way for the use 
of such a spectrograph on future X-ray observatories or Explorer-class missions. 
 
Keywords: X-ray grating spectrometer, dispersive spectroscopy, off-plane mount, suborbital rocket 
 

1. IMPORTANCE OF HIGH RESOLUTION X-RAY SPECTROSCOPY 
 
A high resolution X-ray spectrometer is an essential component of any future X-ray mission. Astrophysically abundant 
metals, such as O, Ne, Mg, Fe, Si, etc., have the majority of their emission and absorption lines in the 0.3 - 2.0 keV 
range. Measuring spectra in this bandpass provides astronomers with a wealth of diagnostics that can be used to 
characterize astrophysical plasmas and the velocity structures of energetic phenomena. Moreover, some of the principal 
science goals outlined by the 2010 Decadal Survey in Astrophysics, such as measuring the absorption caused by the 
“hot” phase of the Warm-Hot Intergalactic Medium (WHIM) along AGN sightlines, can only be addressed by high 
resolution soft X-ray spectra. However, current instrumentation is not capable of achieving the resolutions required to 
meet the science goals outlined by the astronomical community.   
 
The Off-Plane Grating Rocket Experiment (OGRE) represents an important step towards realizing the spectral 
performance requirements of a future X-ray observatory in an easily scalable, cost-efficient means. OGRE will utilize an 
off-plane X-ray grating spectrometer similar to the instrument studied for the International X-ray Observatory (IXO) and 
baselined for the Notional-X-ray Grating Spectrometer (N-XGS) and the Warm-Hot Intergalactic Medium Explorer 
(WHIMex), which was to achieve resolving powers of R ~ 3000 and an effective area of ≥ 1000 cm2 over the 0.3 -2.0 
keV energy range (McEntaffer et al. 2011; Bautz et al. 2012). OGRE’s performance leverages heavily from recent 
developments in the critical technologies of X-ray reflection gratings, slumped glass optics, and CCDs. A sounding 
rocket payload with these components offers an opportunity to flight-prove these advancements for minimal cost. 
Additionally, both the effective area and resolving power of OGRE are limited by payload size. Thus, spectrometer                                                         
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instrument. The converging beam is intercepted by an array of reflective gratings, positioned along the focal axis and 
oriented such that the grating grooves are quasi-parallel to the beam direction. When mounted in this fashion, the 
gratings disperse light out of the plane of incidence (hence, the “off-plane” mount) into a diffraction arc. This arc is then 
imaged with detectors located at the focal plane, allowing the reconstruction of a source spectrum. A sketch of the off-
plane geometry is shown in Figure 2.   
 
The geometry of the off-plane mount offers several distinct advantages over traditional in-plane spectrometers in the 
context of an astronomical observatory. For one, an in-plane spectrometer suffers a drop in efficiency due to groove 
shadowing at grazing incidence, whereas for an off-plane spectrometer, the grooves are fully illuminated when aligned 
to the focal axis. Additionally, an off-plane spectrometer does not suffer from vignetting at high order. The resolving 
power of a grating spectrometer increases when working at higher order, scaling linearly with n, the order number. 
Stacking gratings at grazing incidence to form an array can result in vignetting for gratings in the in-plane mount, since 
higher orders are dispersed upwards into the grating above. The off-plane mount, however, disperses high orders further 
out of the plane of incidence where there is no impediment along the optical path. Finally, off-plane gratings can achieve 
comparable effective areas with only one set of dedicated detector arrays by creating a grating with a blazed groove 
profile. The blazed profile preferentially diffracts X-rays in a given direction, meaning that detectors are only needed 
along a portion of the arc. Limiting the detector size can result in significant mass and cost savings for observatories 
without sacrificing effective area. 
 
OGRE will benefit from the significant heritage of off-plane spectrometers and sounding rockets. Off-plane 
spectrometers have been employed in previous rocket payloads including CyXESS (McEntaffer et al. 2008), EXOS 
(Oakley et al. 2011), CODEX (Zeiger et al. 2013) and the forthcoming OGRESS payload slated for launch in Summer 
2014. These previous experiences have laid the foundation for OGRE, an entirely new payload capable of achieving 
groundbreaking performance in soft X-ray spectroscopy. The OGRE spectrometer will be constructed with focusing 
optics, gratings and detectors representing the cutting-edge of soft X-ray hardware. When finished, the instrument will 
be the most advanced soft X-ray reflection grating spectrometer flown to date. OGRE will make use of mirrors made 
from either slumped glass or single-crystal silicon, an array of blazed, high groove density gratings fabricated at the 
University of Iowa, and an array of EM-CCDs for an improved signal-to-noise ratio (S/N). Each of these hardware 
components are described in detail in the following sections. 
  
3.2 Focusing Optics 
Two different optical designs are being considered for the OGRE focusing optics: 1) a cost-effective assembly with 
mirrors made of thermally slumped glass or 2) a full Wolter type-I telescope with mirrors made from precision cut 
single-crystal silicon. Slumped glass optics were initially proposed for OGRE, as these optics have a well-defined 
fabrication process, are cost-effective and offer adequate focusing power to meet the OGRE performance goals. On the 
other hand, fabricating mirrors with precision cut single-crystal silicon offers the opportunity to fly a full Wolter type-I 
telescope, realize improved focus possibilities, and flight-prove a new technology for use in future X-ray missions. 
However, the fabrication process for single-crystal silicon mirrors is not as well developed as that of thermally slumped 
optics, and thus may be time and cost prohibitive. A final design decision for the OGRE optics will be made sometime in 
Fall 2013; for completeness, an overview of both possibilities is presented here.  
 
Segmented slumped glass optics have been studied extensively for the Nuclear Spectroscopic Telescope Array 
(NuSTAR) mission (Harrison et al. 2013, and references therein) and during concept studies for the International X-ray 
Observatory (IXO). These optics are also baselined for a number of proposed future X-ray observatories given their low 
cost and relative ease of fabrication. The mirror substrate is a thin sheet of float glass which is balanced over a precision 
ground mandrel of the desired shape. The glass is then thermally slumped over the mandrel in a slow bake process, 
allowing it to conform to the underlying shape of the mandrel. After cooling, the glass segment is removed and coated 
with a reflective material such as Au or Ir. The mandrel is then available for reuse. The slumped glass fabrication 
process makes the mass-production of identical optical segments for large assemblies both easy and cost-effective once 
the mandrels have been manufactured. 
 
The proposed slumped glass optical assembly is distinct from a traditional Wolter type-I telescope. Using slumped glass 
technology to make a Wolter type-I telescope would require many mandrels to produce the requisite nested shells of 
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paraboloid/hyperboloid pairs, for each mirror shell has a distinct radius of curvature requiring a separate mandrel. As the 
initial procurement of the mandrels is the most time-intensive and expensive aspect of the slumped glass fabrication 
process, smaller missions can realize a significant cost-savings via an instrument design that uses as few mandrels as 
possible. In keeping with this principle, the slumped glass optics for OGRE will be fabricated using a single 
paraboloidal/hyperboloidal mandrel pair. The design choice to use a single mandrel must be offset by the incorporation 
of a third steering optic along the focal path. As all OGRE mirrors will possess the same radius of curvature, each 
paraboloidal/hyperboloidal pair will have a unique focus when aligned to the same grazing incidence angle. The distinct 
foci will be merged by an assembly of grazing incidence steering flats to form a single focus at the focal plane. The same 
design was studied for the WHIMex concept mission (Cash et al. 2011). Such an optical design allows the construction of 
a telescope with a large collecting area and a single focus in a cost-effective manner.  
 
The implementation of the aforementioned design on OGRE would involve two separate but identical optics modules 
containing slumped glass mirrors. The OGRE optics modules house all of the elements along the spectrometer focal  
path – i.e., the modules will contain the paraboloidal/hyperboloidal mirrors, the steering flats and the dispersive gratings 
(Figure 3). Containing both the focusing and dispersive elements within a single module eases the process of co-
alignment. In a similar fashion, the process of aligning the optics to the detectors will be aided by cantilevering the 
optics modules off of the detector bulkhead. This serves to ensure that all the spectrometer elements are held fixed 
relative to one another. The slumped glass mirrors housed in the optics modules are 30° azimuthal sections of full Wolter  
 
 

 
Figure 3: Left – A cartoon of the OGRE optical path. In this drawing, the dispersion direction is out of the page. Right – A CAD 
rendering of the OGRE optics module containing slumped glass mirrors, steering flats and dispersive gratings. The orientation vectors 
in the lower right corner show the dispersion direction (red), module height (green) and length along the focal axis (blue). 
 

 
Figure 4: Image (left) and power distribution (right) from a 30° azimuthal segment of a single slumped glass paraboloid/hyperboloid 
mirror pair. The signature “bowtie” focus of a limited azimuthual span can clearly be seen in the image, while the right shows the 
slumped glass optics are capable of achieving a 1.4’’ FWHM in the dispersion direction. 
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timeline. It is also unclear whether the single-crystal silicon mirrors could be fabricated within the original optics budget. 
Zhang et al. 2013 report on the ongoing development, recent fabrication milestones and anticipated progress of 
monocrystalline silicon mirrors. We anticipate making a downselect between the two telescope design options 
considered here by the end of 2013. 
 
3.3 Gratings for the Off-Plane Mount 
The OGRE spectrometer will also require high groove density X-ray reflection gratings specialized for the off-plane 
mount. Similar to variable line spacings for in-plane diffraction gratings, the geometrical considerations of the off-plane 
mount requires an adaptation to a simple periodic groove pattern in order to achieve high resolving powers. This 
adaption is a radial “fanning” of the grooves to match the convergence of the incident beam (Cash 1983). To see the 
need for a radially ruled groove pattern, consider a grating placed in a converging beam. The relative angle between the 
grooves and the incident X-rays will vary over the face of the grating for a parallel groove pattern. This relative angle (α 
in Figure 2) enters into the grating equation, such that the variation in this relative angle would result in an aberration in 
the diffracted spot. However, if the grating is radially ruled, the relative angle between the X-rays and the grooves is 
constant over the grating face, allowing for optimal resolution. 
 
The OGRE gratings will also have blazed groove profiles to improve diffraction efficiency. A laminar groove profile 
disperses light to positive and negative orders equally. By sculpting the groove profile to be triangular, a process known 
as blazing, the grating will preferentially disperse light to one side of zero order. This phenomenon can be exploited to 
increase the total efficiency per detector area for a single detector array. The blaze angle can be customized to optimize 
diffraction efficiency in a given bandpass, increasing a spectrometer’s effective area near particular spectral lines of 
interest.  Finally, blazed gratings have the additional benefit of putting more photons into higher orders, which increases 
the spectral resolving power of an instrument.  
 
In addition to these custom features, the OGRE array of off-plane gratings must also have high groove densities (~6000 
gr/mm) to optimize spectral resolution, and be replicated over large (100 mm x 100 mm) formats to achieve reasonable 
collecting areas. A procedure for fabricating such gratings has been proposed and is currently under study at the 
University of Iowa. The fabrication process combines several microfabrication techniques, namely electron-beam 
writing, projection photolithography, nanoimprint lithography and an anisotropic chemical etch, to produce a silicon 
grating substrate with the required characteristics. First, a grating “master” with a laminar, high-density, radially ruled 
groove pattern must be produced. LightSmyth Technologies has developed a technique to produce grating masters 
meeting these requirements and has fabricated several dozen masters over small formats (25 mm x 32 mm) for use in 
grating development studies (McEntaffer et al. 2013). To make the master, an electron-beam writing tool is first used to 
manufacture a photomask at 4x the scale of the grating. Reduction projection lithography is then used to pattern 
photoresist which has been spin-coated onto a single-crystal silicon wafer. A reactive ion etch (RIE) is then used to 
transfer the pattern into the silicon substrate and produce the grating master. This process is capable of achieving a 
feature size of 0.25 nm and is a high density (up 7200 gr/mm), high fidelity step-wise approximation to a radially ruled 
groove pattern. However, the master grating has a laminar, not blazed, groove profile.   
 
The mass-production of identical flight gratings with blazed facets can be achieved through subsequent replication of the 
grating master and chemical post-processing techniques. Figure 6 provides a step-by-step summary of the replication 
process. First, a layer of nitride is placed onto an off-axis cut silicon wafer through chemical vapor deposition. This is 
followed by a layer of nanoimprint resist which is spin-coated atop the nitride (1). Nanoimprint lithography (NIL) is then 
employed to transfer the radially ruled groove pattern of the master grating into the resist layer (2). An RIE deepens the 
groove troughs, etching through the residual resist and nitride layer to the silicon substrate (3). Following a rinse in 
acetone to remove the remaining resist, the substrate surface is left with strips of nitride matching the master groove 
pattern (4). These nitride strips will serve as a mask for the next steps, in which a chemical wet etch is employed to 
produce blazed groove facets (5). A potassium hydroxide (KOH) wet etch on a crystal of pure silicon will preferentially 
etch along the (111) crystallographic plane, removing the substrate material down to this plane. If the silicon wafer is cut 
off-axis such that the (111) plane is oriented at the desired blaze angle relative to the wafer normal, a KOH wet etch will 
blaze groove facets where bare silicon is exposed between the nitride strips. Thus, the nitride mask ensures that the 
original groove density and radial pattern is replicated on the silicon substrate while the KOH etch serves to sculpt an 
atomically smooth, blazed groove profile. This technique of using a nitride mask and a KOH wet etch has been 
previously used to produce blazed gratings (Chang et al. 2003). The nitride strips are then removed with a hydrogen  
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dispersion (which yields better spectrometer resolution) comes either at the cost of a larger detector array or the loss of 
photons at low energies. As additional CCDs increases overall cost, the design of the OGRE camera system must 
balance the science goals of high resolution and a 0.2 keV low energy cut-off with budgetary constraints.  
 
To meet all these requirements, OGRE will employ a camera system consisting of an array of four back-illuminated EM-
CCDs to image the diffraction arc at the focal plane. The use of EM-CCDs will further improve detector efficiency at 
low energies. EM-CCDs differ from traditional CCDs in that the signal passes through an electron multiplication register 
before chip readout, which serves to amplify the input signal. As amplification occurs before the charge is output, 
readout noise is suppressed, and the overall signal-to-noise (S/N) ratio of the device is improved. The improvement in 
S/N greatly increases the detectability of low energy photons, thus helping to maintain high effective areas near the soft 
energy cut-off. The level of gain applied to the signal will be dictated by the native energy resolution requirement of      
< 0.2 keV. Tutt et al. 2011 show that operating EM-CCDs with significant gain degrades the native energy resolution of 
the CCD and can interfere with order separation. However, by operating the EM-CCDs with modest gain levels, the 
OGRE camera should satisfy the requirement of preserving a native energy resolution of < 0.2 keV while benefitting 
from an increased S/N.  
 
The camera design baselined for OGRE assumes the use of two slumped glass optics modules and places an array of 
detectors along the diffraction arc. Figure 7 shows the focal plane layout of the diffraction arc and the nominal position 
of the EM-CCDs in the detector array. The extent of the detector array permits the detection of both diffracted orders and 
the zero order spots from both modules simultaneously, which is required for spectral calibration. As each optics module 
creates a distinct arc of diffraction, capturing the spectra with a single set of CCDs requires blazing the gratings in 
opposite directions. This serves to disperse the spectra in opposing directions, placing low orders from one module on 
the same chip as high orders from the other. A small vertical offset (~10 mm) between the modules ensures that there is 
no overlap between the two separate diffraction arcs while keeping both on the detector array. This focal plane layout is 
similar to the proposed WHIMex mission and maximizes the resolving power of an off-plane spectrometer with two 
distinct optics modules. Dispersing the spectra in opposing directions also provides a beneficial redundancy in that, 
should one EM-CCD fail in flight, the remaining detectors are still sufficient to sample the full bandpass of interest. The 
CCDs baselined for the OGRE camera are e2v 207-40 EM-CCDs, which measure 25 x 25 mm and have a pixel size of 
13.5 μm. The camera system, including the CCD array and interface electronics, will be built and integrated into a flight 
housing by XCAM Ltd.  
 
 

 
 

Figure 7: Layout of the OGRE spectrometer focal plane. Blue squares mark the position of the CCDs while the inner blue curves 
designate the position of the diffraction arcs from the optics modules. All measurements are given in millimeters. 
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4. PERFORMANCE AND TIMELINE 
 
Both the expected effective area and resolving power for the OGRE spectrometer have been calculated and are plotted in 
Figure 8. The effective area curve begins with the geometric collecting area and accounts for the reflection efficiency of 
the gold coated paraboloidal/hyperboloidal mirror pairs, grazing incidence flats, the absolute (i.e. reflectivity included) 
diffraction efficiency of the gratings and the quantum efficiency of the e2v 207-40 EM-CCDs with an optical blocking 
filter. Contributions from both optics modules are summed to arrive at the plotted effective area curve. This calculation 
shows that OGRE will easily meet the science requirement of > 100 cm2 for the 0.3 – 1.0 keV energy range and possess 
moderate effective areas down to the low energy cutoff of the instrument. As for resolving power, the right panel of 
Figure 8 shows that the OGRE spectrometer will possess resolutions of R > 1000 across the 0.3 –1.0 keV energy range 
and have peak resolutions of R > 2000 at 58 Å (~0.2 keV) in 1st order, 29 Å (~0.4 keV) in 2nd order, and 14.5 Å (~0.6 
keV) in 3rd order.  
 
As for mission timeline, the optical and mechanical design of the OGRE spectrometer is currently being finalized. We 
anticipate selecting a manufacturing technique for the OGRE focusing optics in Fall 2013. Trade studies to refine the 
process of blazed grating fabrication will commence before the end of 2013, while an investigation of the electronics 
interface for the OGRE camera will begin in early 2014. The next period of our program, Fall 2014 – Spring 2016, is 
dedicated to the procurement and manufacture of the focusing optics, gratings, and camera system. Integration and 
performance testing will follow the assembly in Summer 2016, with payload qualification and flight anticipated in 
Spring 2017.  
 

5. CONCLUSION 
 
The OGRE mission represents a key stepping stone toward to future X-ray observatories with high resolution 
spectrometers. The cutting-edge OGRE spectrometer will make use of advancements in the fabrication and alignment of 
focusing optics, a new technique to manufacture reflection gratings for the off-plane mount, and EM-CCDs to achieve 
resolving powers of R ~ 2000 and effective areas of < 100 cm2 in the soft X-ray bandpass. The construction and 
successful flight of this spectrometer will result in the highest resolution spectrum ever taken of an astrophysical source 
in the soft X-ray bandpass. The OGRE mission will also bring all of the relevant technologies to a high readiness level, 
laying the foundations for the use of other high resolution X-ray spectrometers onboard future X-ray observatories. Such 
spectrometers will be essential to address the questions posed by the 2010 Astronomy and Astrophysics Decadal Survey 
and open the doors to new X-ray science.  
 

 
Figure 8: Calculated effective area (left) and resolving power (right) of the OGRE spectrometer. The effective area curve 
demonstrates that OGRE will meet the effective area requirement of > 100 cm2 over the 0.3 – 1.0 keV range, while the plot of the 
expected spectral resolving power shows OGRE should achieve peak resolutions of R > 2000. 
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