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Abstract Future NASA X-ray Observatories will shed light on a variety of high-
energy astrophysical phenomena. Off-plane reflection gratings can be used to provide
high throughput and spectral resolution in the 0.3–1.5 keV band, allowing for
unprecedented diagnostics of energetic astrophysical processes. A grating spectrom-
eter consists of multiple aligned gratings intersecting the converging beam of a
Wolter-I telescope. Each grating will be aligned such that the diffracted spectra
overlap at the focal plane. Misalignments will degrade both spectral resolution and
effective area. In this paper we present an analytical formulation of alignment tol-
erances that define grating orientations in all six degrees of freedom. We verify our
analytical results with raytrace simulations to fully explore the alignment parameter
space. We also investigate the effect of misalignments on diffraction efficiency.

Keywords Diffraction gratings · X-ray spectroscopy · Alignment tolerances

1 Introduction

The development of critical technologies is required to accomplish the science goals
of future NASA X-ray observatories. One such technology is off-plane reflection
gratings to produce high throughput and high spectral resolving power at energies
below 1.5 keV. Grating spectrometers are currently used onboard the Chandra X-
ray Observatory and XMM-Newton as the main workhorses for X-ray spectroscopy
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with a resolution limit of 1000 (λ/δλ) and low effective area (� 100 cm2) over the
same band. Future goals of > 3000 spectral resolving power and effective areas of
> 1000 cm2 necessitate a new generation of high quality spectrometers capable of
achieving these performance requirements [8].

Off-plane reflection gratings are an attractive option for X-ray spectrometers. They
offer compact packing geometries, excellent grating efficiency, and the potential for
very high resolving powers. An array of off-plane gratings can be coupled with a
set of nested Wolter-I optics (a primary parabolic mirror, followed by a secondary
hyperbolic) to disperse a spectrum onto an imaging detector placed at the focal plane,
typically a CCD camera [6]. The spectrum forms an arc of diffracted light in the shape
of a cone, giving the common name for this type of diffraction—conical diffraction.

To obtain future requirements of spectral resolving power and throughput, off-
plane gratings require customized groove profiles. Figure 1 depicts the grating
geometry and outlines the necessary advancements. The image on the left is the
canonical off-plane geometry with light intersecting a ruled grating nearly parallel
to the groove direction. This creates an arc of diffraction at the focal plane with dis-
persion dictated by the displayed grating equation. The image on the right is similar,
but has the optical axis pointing out of the page. The grating grooves are shown pro-
jected from the position of the gratings to a focal plane located several (typically ∼
8) meters away. High X-ray throughput requires high reflectivity and hence grazing
incidence. To increase the total collecting area, many gratings are stacked into an
array. Tight packing geometries are allowed because the cone angle of the diffracted
light is roughly equal to the graze angle of the incoming light.

The effective area can be increased further by blazing the groove facets to a trian-
gular profile that preferentially disperses light to one side of zero order. This requires
a smaller readout detector (or less detectors in an array) and thus increases the signal-
to-noise in these orders. The angle of the blaze on the grooves (θ in Fig. 1) is chosen
to optimize diffraction efficiency toward the middle of the first order bandpass. This,

Fig. 1 Left—The off-plane grating mount. Right—Three gratings, placed many meters from the focus,
are shown projected onto the focal plane to elucidate the nature of the arc of diffraction which is detected
by an array of CCDs (depicted as squares)
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in turn, translates to optimized efficiencies at higher orders for shorter wavelengths.
The grating array is then rotated slightly about the grating normal resulting in an α

for zero order at the focal plane that equals the β of the optimized wavelength. When
α = β = θ the array is in the Littrow configuration and is optimized for diffraction
efficiency [3]. The similarity to the Littrow configuration in the in-plane diffraction
sense can be seen by examining Fig. 1 and setting α = β.

The projection of the grooves in Fig. 1 illustrates the radial distribution of grooves
necessary to achieve high spectral resolving power [3]. This convergence matches
that of the telescope beam, thus maintaining a constant α over the grating. This leads
to a constant β per wavelength at the focal plane and eliminates grating induced
aberration due to the groove profile. In other words, the converging rays from the
Wolter I mirrors strike the grating at nearly the same angle with respect to the grooves
at all points on the grating surface.

High groove density is another grating characteristic necessary for high spectral
resolving power. The baseline for future X-ray missions includes telescope optics
with a 5–15 arcsecond half power diameter (HPD). The telescope beam can be sub-
apertured [4] by the grating array to create a bowtie shaped line spread function (LSF)
with a full width at half maximum (FWHM) of ∼ 1 − 2 arcsecond in the dispersion
direction. The dispersion of a grating measures the physical extent over which the
spectrum is diffracted. It is proportional to both the groove density and the distance
between the grating array and the focal plane, the latter typically being called the
throw. Therefore, higher groove densities and/or longer throws increase dispersion,
and therefore, spectral resolving power. A throw of several meters (� 5) and a ∼ 10
arcsecond telescope HPD that can be sub-apertured down to ∼ 1 − 2 arcsecond
translates to groove density requirements of > 5000 grooves/mm.

Figure 1 also depicts the need for precision alignment within the off-plane grat-
ing array. The grooves on each grating converge to a point at the center of the circle
defined by the intersection of the cone of diffraction with the focal plane. This focal
circle is also coincident with the telescope focus and the zero order focus. The grat-
ings within an array are aligned such that all groove hubs are coincident. Also, all
grating surfaces must project to the diameter of the focal circle. With these alignments
achieved, the spectra from each grating overlap at the focal plane.

The off-plane mount provides a method for achieving the performance require-
ments of future soft X-ray spectroscopy missions. However, developments in grating
fabrication and alignment are necessary to ready this technology for flight. First,
off-plane gratings require custom profiles and higher groove densities in compari-
son to in-plane gratings. Second, the alignment tolerances are tighter in comparison
to transmission grating spectrometers. Issues pertaining to the former are being
addressed in a parallel study [8]. In this paper, we take the first step to address
the latter by quantifying the off-plane alignment tolerances for a general spectrom-
eter architecture. First, we outline the mathematical formalism for analyzing the
diffraction by an off-plane reflection grating. Next, we define nominal alignment
parameters using this formalism for a flight-like spectrometer. Analytical alignment
tolerances are obtained for all six degrees of freedom. We verify these analytical
calculations numerically using computer raytracing. The alignment tolerances are
presented and examined for scalability with spectrometer focal length and spectral



664 Exp Astron (2013) 36:661–677

resolution requirement. Finally, we investigate the dependence of diffraction effi-
ciency on misalignments.

2 Mathematical formalism

Harvey and Vernold [5] describe a convenient formalism for predicting the diffrac-
tion of light incident upon a parallel groove reflection grating for arbitrary grating
orientation with respect to the incident beam. This formalism makes use of direction
cosines for the incident and diffracted rays, and the coordinate system used in this
paper is shown in Fig. 2. αi and βi are the direction cosines of the incident beam, α0
and β0 are the direction cosines of the undiffracted, specularly reflected beam, and
αm and βm are the direction cosines of the diffracted beam of the mth order. In the
figure, the grating grooves are aligned with the β̂ axis. The angle between the grating
grooves and the α̂ axis is given by �. In Fig. 2, � = 90◦ and the grooves are aligned
with the β̂ axis. This formalism is completely general and reduces to that of Fig. 1 in
the limit of � → 90◦. Note that these coordinates are not related to the angles α and
β in Fig. 1.

The angular coordinates in real space are θ and φ, where φ is the polar angle
with respect to the grating normal and θ is the subsequent rotation angle about the β̂

axis, with the same subscripts associated with α and β. By solving for the direction
cosines of the mth diffracted beam, one can solve for the angle θm (φm = φ0) and
thus find the direction vector describing the diffracted beam in real space. We define
our real space coordinate system as x̂ = α̂, ŷ = α̂ × β̂, and ẑ = β̂. This formalism

Fig. 2 The mathematical description of the off-plane grating geometry. αi , βi describe the orientation of
the incident beam, α0, β0 describe the orientation of the specularly reflected beam, and αm, βm describe
the orientation of the various orders of diffraction. Adapted from Harvey and Vernold [5]
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says nothing about the efficiency of the diffracted orders, which will be addressed in
Section 6.

Using these coordinates, the equations giving the diffracted directions for arbitrary
beam incidence and grating orientation are

αm + αi = (mλ/d)sin�

βm + βi = −(mλ/d)cos� , (1)

where αm = sinθmcosφm, βm = sinφm, αi = −sinθ0cosφ0, and βi = −sinφ0.
Figure 3 shows the various diffracted orders in direction cosine space for various
grating orientations. The zero order, specularly reflected beam location is fixed based
on the incident beam’s location, the spacing of the various orders is dictated by the
wavelength λ and groove period d, and the orientation of the line of diffraction in
direction cosine space is dictated by the grating orientation �. Orders lying outside
the α2 + β2 = 1 circle in direction cosine space are so-called evanescent orders, and
are not observed in real space.

Note that the correct oblique beam alignment is achieved in practice by setting
the incidence angle i and an effective yaw angle �eff (groove direction) of a grating

Fig. 3 Direction cosine diagrams for diffraction with various yaw angles �. The location of zero order is
set by the specular reflection of the incident beam. As � changes, the line of diffraction in cosine space
rotates about zero order. In this framework, the transition from classical in-plane diffraction to conical
off-plane diffraction can be easily understood. Adapted from Harvey and Vernold [5]
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with respect to the nominal optical axis of the mirror pair to which it is aligned. In
other words, the grating position is adjusted to a stationary optical axis, rather than
vice versa. This can be understood in a reference frame where θ ′

0 = 0 and φ′
0 = i.

The beam impact geometry defined by the original θ0, φ0, and � defined above is
preserved using i = sin−1(cosφ0cosθ0) and �eff = � + tan−1(sinθ0tanφ0).

3 Assumptions

For our initial grating alignment calculations, we will be using radial gratings with a
groove period of d = 160 nm at an 8 m distance from the hub. Longer wavelength
light is diffracted at larger angles, requiring tighter alignment tolerances. Thus, we
assume a wavelength of 4.1 nm, corresponding to an energy of 0.3 keV (the low end
of our desired energy range). We take a characteristic initial beam alignment with
an incidence angle i = 88.5◦ and θ0 = −18◦, where sini = cosφ0cosθ0. This θ0
will optimize the grating for a first order Littrow configuration at a wavelength of
roughly 4 nm. The sign of θ0 is arbitrary; one of the first order beams is diffracted
into evanescence, while the other is available for spectroscopy. We set our nominal
yaw to � = 90◦. Finally, we assume a flat focal plane positioned a distance L = 8 m
from the nominal beam impact point (the origin in Fig. 2) along the ẑ axis and parallel
to the xy plane. This distance is typical of X-ray grating spectrometer architectures
recently studied by NASA [1, 7].

A direction cosine diagram illustrating our assumptions is shown in Fig. 4. For
our assumptions, the diffraction orders would be clustered near α = 0, β = 1 and
would not be visually distinguishable. We therefore set φ0, θ0, and d to 70◦, −22◦,
and 16 nm, respectively, in order to make the diagram readable. The diagram is qual-
itatively consistent with our assumptions. Note that the only diffraction order not in
evanescence is the first and the location of the first diffraction order is in the Littrow
configuration (α1 = αi and β1 = −βi).

4 Spectral resolution spot shift requirements

Reflection grating spectroscopy turns the spectral resolution problem into a spatial
resolution problem. Photons will be dispersed in the x̂ direction based on their wave-
length. Thus, we map a photon’s x position on the detector to wavelength or energy
regardless of its y position as evident in the upper left panel of Fig. 3. For a sin-
gle grating, the spectral resolution is then dictated by the point spread function of
the diffracted image in the x̂ direction. With current sub-apertured Wolter I optics
produced by Zhang et al. [12], the line spread function (LSF) in the dispersion direc-
tion (x̂) is approximated by a line with a 1 arcsecond full width at half maximum
(FWHM). The line width is oriented in the dispersion direction so that energy resolu-
tion is dictated by the 1 arcsecond spread. For our throw length (L), this is equivalent
to roughly 40 μm. Thus, an estimate of our spectral bin size is 40 μm.

When a second grating is integrated into the spectrometer array, it must be aligned
such that its arc of diffraction coincides with that of the first grating. Misalignments,
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Fig. 4 A representative diffraction cosine diagram for the assumptions in Section 3. The beam incidence
angles and groove period have been adjusted in order to spread the diffraction orders out for readability.
Evanescent diffraction orders are shown in red, while the non-evanescent first diffraction order is shown
in blue. For our assumptions the diffraction orders would be clustered together near the top of the diagram
such that they would not be visually distinguishable

both angular and translational, will cause the diffracted beam of a given order and
wavelength to shift. Our initial goal is to limit this shift in the x̂ direction to less than
40 μm (the spectral bin size) at the detector plane. As a first step, we will calculate
the maximum allowable misalignment for each independent degree of freedom. The
40 μm spot shift limit is somewhat arbitrary; the actual spot shift requirement for an
instrument would flow down from a top level spectral resolution requirement. This
will be addressed in a future paper investigating both coupled alignment tolerances
and optimization of spectral resolution and diffraction efficiency.

To calculate the effect a given misalignment has on a photon’s x position at the
focal plane, we must express x as a function of αm and βm. Let 	 be the angle
between the ẑ (or β̂) axis and the projection of the diffracted beam onto the xz plane.
The distance between the beam impact point and the focal plane is L, thus the beam’s
x position at the focal plane is Ltan	. 	 can also be expressed as arctan(αm/βm),
leading to x = Lαm/βm. Finally, to calculate the shift in x position of the mth
diffracted beam due to a misalignment, initial (subscript 0) and final (subscript 1)
direction cosines can be used to obtain


x = L1(αm,1/βm,1) − L0(αm,0/βm,0), (2)

where L0 = 8 m and L1 is the final throw length after a possible shift in the beam
impact location due to translations of the grating.
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5 Analytical alignment tolerances

In this section, (1) and (2) are used to calculate the maximum misalignment such that

x ≤ 40 μm. For each degree of freedom, perfect alignment is assumed for the other
five degrees of freedom.

5.1 Yaw

As the yaw angle of the grating (�) is changed, the line of diffraction in direction
cosine space is rotated about zero order as in Fig. 4. This inherently asymmetric effect
is shown in Fig. 5. This figure shows the positional dependence (
x) of a first order,
4.1 nm spectral line on alignment errors in the rotational degrees of freedom. As �

is rotated in the positive (counterclockwise) direction in Fig. 4, first order is rotated
up toward evanescence (out of the α2 + β2 unit circle), which it eventually reaches
at roughly � = 0.5◦. As � is rotated in the negative (clockwise) direction, at first
the x position increases because βm,1 is decreasing while αm,1 is nearly constant with
small yaw rotations. Eventually, αm,1 begins to rapidly decrease as � continues to
decrease, resulting in an inflection point in the x position with respect to yaw angle.
The bounds on yaw are constrained by our spectral requirement (horizontal dashed
lines in Fig. 5) at −2.47◦ and +0.52◦. The first order beam becomes evanescent
shortly after the upper bound is surpassed.

5.2 Pitch

Changing the pitch angle results in a change in both θ0 and φ0, because the incident
beam is rotated about the x̂ (α̂) axis. The new beam incidence is found by applying
the appropriate rotation matrix Rx , which results in a first order diffraction direction

Fig. 5 Shifts in the x position of the diffracted beam at the focal plane as a function of angular misalign-
ment. Assumptions are as in Section 3. A dashed line along a curve indicates a transition into evanescence.
The horizontal black dashed lines indicate the spectral resolution constraints on 
x
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with respect to the new grating plane. Then, the inverse rotation R−1
x must be used to

convert the diffraction direction back in the original coordinate system of the grating
with zero pitch offset. The initial and final direction cosines are then used to calculate

x. These results are shown in Fig. 5, where a positive pitch angle indicates a more
glancing incidence angle. As pitch is increased, the entire line of diffraction as in
Fig. 3 moves up toward evanescence, which first order (4.1 nm) reaches at 0.65◦. A
decrease in pitch causes the line of diffraction to move away from evanescence, and
creates more spectral displacement in our focal plane. Spectral resolution sets the
lower bound on pitch at −0.28◦.

5.3 Roll

Changing the roll angle (θ0) produces a rotation of the diffracted orders at the detector
plane about the ẑ (β̂) axis, at least for small roll angles at a glancing beam incidence.
The shift of the diffraction spots in the x̂ direction due to this rotation is given by
LtanisinR, where i is the incidence angle and R is the roll angle. Equating this to
40 μm yields a roll angle tolerance of ±40 arcsec. An additional effect, which is
important for our calculations, is the change in diffraction due to the change in θ0.
Similar to the preceding section, we analyze roll effects by using a rotation matrix
Rz to determine the beam incidence with respect to the rolled grating. The first order
diffracted direction is then rotated back into the original coordinate system using
R−1

z . The results are shown in Fig. 5, and is approximately linear in the relevant
angular range. Roll is constrained by spectral resolution at ±21.6 arcsec. Note that
this is tighter than the tolerance predicted simply by rotating the diffraction spots
about ẑ.

5.4 x̂ translations

Translating the grating in the x̂ (α̂) direction results in a change in yaw angle. This
occurs due to the radial grooves which are all directed toward the same point in the
focal plane (i.e. they follow the cone angle of the incident beam). For large φ0, there
is a negligible change in groove spacing d. A shift δx results in an effective yaw equal
to arctan(δx/L). One can then use the results from the yaw analysis to determine
translational bounds in the x̂ direction of 73.3 mm and 349 mm. As with the rotational
degrees of freedom, changes in the first order diffraction spot in the focal plane are
also directly calculated as a function of x̂ grating translations using (1) and (2) and
are shown in Fig. 6.

5.5 ẑ translations

For our beam geometry, ẑ translation of the grating changes the grating period d
with a negligible change in yaw angle. The groove period is linear with distance
along the ẑ direction, and can be expressed as a function of the nominal period and
the nominal throw length: d(z) = zd0/L0. Taking our nominal z position to be
8 m, we can write the groove period as a function of ẑ grating translation δz as
d(δz) = (8 m + δz)(160 nm/8 m). Using this expression in (1) to compute direction
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Fig. 6 Shifts in the x position of the diffracted beam at the focal plane as a function of translational
misalignment. Assumptions are as in Section 3. A dashed line along a curve indicates a transition into
evanescence. The horizontal black dashed lines indicate the spectral resolution constraints on 
x

cosines for use in (2) leads to ẑ translation bounds of ±1.51 mm. The results of this
calculation are shown in Fig. 6 and demonstrate that the effect is approximately linear
in the range of interest.

5.6 ŷ translations

ŷ translations will move the point of incidence, changing both the throw length and
the groove period in the process. The total shift in the beam impact location on the
grating is sl = δy/tani = δy/tan(sin−1(cosθ0cosφ0)) � δy/(cosθ0cosφ0) (for large
φ0). The ẑ component of this shift can be written sz = slsinφ0 = δytanφ0/cosθ0.
Then, the throw length goes to L + sz and the groove period goes to (L + sz)(d0/L)

as in the previous section. This leads to a change in the location of the diffracted spot
of 
x = (L + sz)(sinθ0cosφ0 + mλL/(d0(L + sz))) − L(sinθ0cosφ0 + mλ/d0) =
δytanθ0sinφ0. However, there is also a x̂ shift in the beam impact location sx =
slsinθ0cosφ0 = δytanθ0. sx is in the opposite direction of 
x, and in the limit of
large φ0 the two effects cancel. These effects are calculated using our alignment
assumptions and shown in Fig. 6, where the upper limit of 0.5 m is due to a spectral
resolution cutoff and the lower limit of 76.9 mm is due to the first order becoming
evanescent.

6 Effective area considerations

A broadening of the arc of diffraction in the ŷ direction will result in an effective area
loss due to the deposited charge being spread over a greater number of CCD pixels.
This increased noise can be limited by reducing the alignment tolerances such that
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the diffraction spot always rests within the 10 arcsecond half power diameter (HPD)
of the telescope point spread function (PSF) in the ŷ direction. With our 8 m throw
length, this translates into a 378 μm y shift in the CCD plane. As in Section 4, this
limit is somewhat arbitrary. This analysis is conceptually similar to the above spectral
resolution analysis, with the shift


y = L1tan(arcsin(γm,1)) − L0tan(arcsin(γm,0)), (3)

where γ is the direction cosine in the α̂ × β̂ direction. The third direction cosine
can easily be calculated using γ = √

1 − α2 − β2. Analyses analogous to those of
Section 5 were carried out and are presented in Figs. 7 and 8. The tolerances for yaw,
pitch, x̂, and ŷ translation are tightened to ±7.9 arcsec, ±4.3 arcsec, ±317 μm, and
±170 μm, respectively. The new tolerances produced for roll and ẑ translations are
looser than those calculated in Section 5. The results are summarized in Table 1 (see
Section 8).

7 Raytracing verification

The above tolerances were verified by raytracing using Interactive Ray Trace © (IRT;
Parsec Technology, Inc.). A standard Wolter I telescope geometry was used with
mirror parameters as defined in van Speybroeck and Chase [11]. Our mirror param-
eters were Lh = Lp = 200 mm, r0 = 244.5 mm, and Z0 = 8400 mm. We
included a 25 mm gap between the primary and secondary mirrors. We then placed
a 100 × 100 mm2 radial grating with a 50 mm gap in the axial direction between the
bottom edge of the secondary mirror and the top edge of the grating. The 1.5◦ grat-
ing incidence angle was defined by the angle between the grating surface and the unit

Fig. 7 Shifts in the y position of the diffracted beam at the focal plane as a function of angular mis-
alignment. Assumptions are as in Section 3. The horizontal black dashed lines indicate the effective area
constraints on 
y
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Fig. 8 Shifts in the y position of the diffracted beam at the focal plane as a function of translational
misalignment. Assumptions are as in Section 3. The horizontal black dashed lines indicate the effective
area constraints on 
y

vector from the center of the secondary mirror to the focus. The grating center was
placed to intersect this unit vector. The grating hub was located a distance 8088 mm
from the grating center. Scatter based on the theory of Beckmann and Spizzichino [2]
was added to the photons at the primary mirror to account for microroughness. To
produce the LSF in the dispersion direction obtained by Zhang et al. [12], a 1 arc-
second Gaussian spread was added along the x̂ axis. As in Section 5, we assume a 1
arcsecond FWHM in the dispersion direction and a 10 arcsecond HPD in the orthog-
onal direction. The photons were traced to the plane orthogonal to the grating and
intersecting the grating hub. The resultant PSF is shown in Fig. 9.

To verify the analytical tolerances, a misalignment was introduced and photons
were traced to the CCD plane and compared to the nominal PSF (Fig. 9). The mis-
alignment was increased until one of three tolerance conditions were violated: 1) The
mean x position was > 40 μm from that of the nominal PSF, 2) The mean y position
was > 378 μm from that of the nominal PSF, and 3) More than 10 % of the rays
were cut off due to evanescence. Histograms of the x positions for a 22 arcsecond roll

Table 1 Analytical Alignment
Tolerance Summary Misalignment Tolerance Limiting effect Linearity

factor

Yaw ±7.9 arcsec Effective area 9

Pitch ±4.3 arcsec Effective area 106

Roll ±21.6 arcsec Spectral resolution 174

x̂ ±317 μm Effective area 9

ŷ ±170 μm Effective area 42

ẑ ±1.51 mm Spectral resolution 52
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Fig. 9 The PSF obtained from
our sub-apertured Wolter I
raytracing code. It is
approximated by a line with a 1
arcsecond (40 μm) Gaussian
spread in the dispersion (x̂)
direction. The spread in the
orthogonal direction is
dominated by microroughness
induced scatter. This is
characteristic of the PSF of
modern mirrors produced by
Zhang et al. [12]

misalignment and y positions for a 170 μm ŷ translation are shown in Figs. 10 and
11. All six degrees of freedom produced faults via either condition 1 or 2, consistent
with Section 5.

8 Alignment requirements and scalability

Table 1 summarizes our verified alignment tolerances. The results plotted in Section 5
indicate linearity of the alignment tolerances with respect to spot shift requirements.

Fig. 10 The distribution of counts from the PSF of Fig. 9 in the x̂ direction. The ideal distribution is
obtained for a nominally aligned grating. The misalignment distribution is obtained after the roll tolerance
of 22 arcseconds is reached. The 40 μm (1 arcsecond) Gaussian spread is caused by mirror figure error
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Fig. 11 The distribution of counts from the PSF of Fig. 9 in the ŷ direction. The ideal distribution is
obtained for a nominally aligned grating. The misalignment distribution is obtained after the ŷ translation
tolerance of 170 μm is reached. The 378 μm (∼ 10 arcseconds) spread is caused by microroughness
induced scatter

To investigate the limits of this linearity, lines were fit to the limiting tolerance curves
within the |
x| < 40 μm or |
y| < 378 μm bounds. The percent difference between
the fitted lines and the full misalignment curves were then limited to < 1 %. The 
x

or 
y values at which this condition was violated were taken as the linearity limits.
This occurred at more than 9 times the 40 μm or 378 μm bounds for all degrees
of freedom. The factor by which 
x or 
y can be increased before the linearity
is broken is listed in Table 1 as the linearity factor. In other words, increasing the

x and 
y limits by a factor of 9 to 360 μm and 3.4 mm, respectively, results in
all of the tolerances being increased by that same factor. Thus, these tolerances are
linear for less stringent spectral resolution and effective area requirements up to a
factor of about 9, assuming a fixed focal length. Tightening the spectral resolution
and effective area requirements clearly maintains linearity on the tolerances up to
any factor. These tolerances are also predicted to scale linearly with the focal length
based on (1) and (2).

9 Diffraction efficiency

As mentioned in Section 2, the formalism used in this paper does not account for
changes in diffraction efficiency. If the diffraction efficiency per grating were to
change appreciably due to misalignments, calculating the effective area of the grat-
ing spectrometer would have to take this into account. In fact, this would also greatly
complicate the energy response function of the spectrometer: the precise alignment of
each mirror pair and grating would need to be known to compute the on-axis energy
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response function, and an off-axis source could potentially change the response func-
tion in a significant manner. Fortunately, we have performed efficiency simulations
that show this is not a concern for our expected misalignments.

We use the commercial software PCGrate-S(X) v.6.1 © (I.I.G. Inc.) to compute
our efficiencies, as the dependence of diffraction efficiency on beam geometry and
wavelength is a complicated computational problem (see Neviere and Popov [9] for
a review). The software works by solving a system of integral equations over the
periodic groove boundary. We assume a grating with an 18◦ blaze angle and a 160 nm
period. The groove profile is right triangular, and the groove material is gold. The
nominal θ0 and φ0 are as in Section 3. The normal computation mode is used with the
standard options, and we obtain normal accuracy conditions (e.g. relative efficiency
summed over all orders is 1) for all calculations reported in this paper.

After an angular or translational misalignment, three parameters relating to
diffraction efficiency can change: θ0, φ0, and groove period d. Characteristic limits
on these parameters are ±22 arcseconds, ±4 arcseconds, and ±0.03 nm, obtained
from the roll, pitch, and ẑ translation tolerances above. Our goal was to determine
bounds on these parameters based on when the diffraction efficiency changes appre-
ciably. An appreciable change was defined as a > 1 % RMS difference in diffraction
efficiency over the 300–1500 eV (4.1–0.8 nm) range. For each parameter of interest,
the value was shifted away from the nominal value in an iterative process until this
change condition was reached. This was done for both transverse electric (TE) and
transverse magnetic (TM) polarizations. Figures 12, 13, and 14 show the nominal
diffraction efficiency and the diffraction efficiency after the change condition was
reached in both the positive and negative direction. Note that the dramatic depen-
dence on polarization is an expected result, and such a dependence has been measured

Fig. 12 Diffraction efficiencies for both transverse electric (TE) and transverse magnetic (TM) polariza-
tions for a nominal (88.4228◦) and misaligned φ0. For our angular misalignment tolerances, the maximum
change in φ0 is ±4 arcseconds (pitch)



676 Exp Astron (2013) 36:661–677

Fig. 13 Diffraction efficiencies for both transverse electric (TE) and transverse magnetic (TM) polar-
izations for a nominal (18◦) and misaligned θ0. For our angular misalignment tolerances, the maximum
change in θ0 is ±22 arcseconds (roll)

in the past [10]. In all cases, the misalignments which result in the 1 % RMS effi-
ciency change are at least an order of magnitude greater than the characteristic limits
given above. They are also much greater than the pointing stability of a typical X-ray
observatory (∼ 0.25 arcseconds for Chandra). These results indicate that a single
diffraction efficiency curve can be used to determine effective area, and that the

Fig. 14 Diffraction efficiencies for both transverse electric (TE) and transverse magnetic (TM) polar-
izations for a nominal (160 nm) and misaligned groove periods. For translational misalignments, the
maximum change in groove period is ±0.03 nm (ẑ translation)
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effective area (i.e. energy response function) can be assumed to be constant during a
telescope pointing.

10 Summary

We have shown, using both an analytical and raytracing approach, the alignment tol-
erances for all six degrees of freedom for an off-plane reflection grating spectrometer.
We have used reasonable nominal alignment assumptions for a flight-like instru-
ment, and have shown that our results scale linearly with focal length and spectral
resolution and effective area requirements within realistic ranges. Furthermore, we
have shown that for our alignment tolerances, diffraction efficiency can be assumed
to be constant. In calculating the tolerance for a given misalignment, this work has
assumed perfect alignment for the other five degrees of freedom. In a later paper, we
intend to show results of a raytracing algorithm designed to simultaneously incorpo-
rate all six alignment degrees of freedom. We will present a best-case error budget
for a flight-like spectrometer with a full grating array.

Acknowledgments The authors acknowledge support from NASA Strategic Astrophysics Technology
grant, NNX12AF23G. The commercial software PCGrate-S(X) v.6.1 © (I.I.G. Inc.) was also crucial in the
completion of this work.

References

1. Bautz, M.W., et al.: Concepts for high-performance soft X-ray grating spectroscopy in a moderate-
scale mission. Proc. SPIE 8443, 15–23 (2012)

2. Beckmann, P., Spizzichino, A.: Artech House Inc., Norwood (1987)
3. Cash Jr., W.C.: Appl. Opt. 22, 3971 (1983)
4. Cash, W.: X-ray optics: A technique for high resolution imaging. Appl. Opt. 26, 2915–2920 (1987)
5. Harvey, J.E., Vernold, C.L.: Appl. Opt. 37(34), 8158–8160 (1998)
6. McEntaffer, R.L., et al.: Developments of the off-plane x-ray grating spectrometer for IXO. Proc.

SPIE 7732, 48–60 (2010)
7. McEntaffer, R.L., Cash, W., Lillie, C., Casement, S., Zhang, W., Holland, A., Murray, N., O’Dell, S.,

Schattenburg, M., Heilmann, R., Tsunemi, H.: Development of off-plane gratings for WHIMex and
IXO. Proc. SPIE 8147, 81471K-81471K-11 (2011)

8. McEntaffer, R.L., et al.: First results from a next-generaion off-plane X-ray diffraction grating. Exp.
Astron. 36, 389–405 (2013). doi:10.1007/s10686-013-9338-1

9. Neviere, M., Popov, E.K.: SPIE Proc. 3450, 2 (1998)
10. Seely, J.F., Goray, L.I., Kjornrattanawanich, B., Laming, J.M., Holland, G.E., Flanagan, K.A.,

Heilmann, R.K., Chang, C.H., Schattenburg, M.L., Rasmussen, A.P.: Efficiency of a grazing-
incidence off-plane grating in the soft X-ray region. Appl. Opt. 45, 8 (2006)

11. van Speybroeck, L.P., Chase, R.C.: Appl. Opt. 11, 440 (1972)
12. Zhang, W.W., Biskach, M.P., Blake, P.N., et al.: SPIE Proc. 8443 (2012)

http://dx.doi.org/10.1007/s10686-013-9338-1

	Analytical alignment tolerances for off-plane reflection grating spectroscopy
	Abstract
	Introduction
	Mathematical formalism
	Assumptions
	Spectral resolution spot shift requirements
	Analytical alignment tolerances
	Yaw
	Pitch
	Roll
	 translations
	 translations
	 translations

	Effective area considerations
	Raytracing verification
	Alignment requirements and scalability
	Diffraction efficiency
	Summary
	Acknowledgments
	References


