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ABSTRACT 
CCDs are regularly used as imaging and spectroscopic devices on space telescopes at X-ray energies due to their 
high quantum efficiency and linearity across the energy range.  The International X-ray Observatory’s X-ray 
Grating Spectrometer will also look to make use of these devices across the energy band of 0.3 keV to 1 keV.  
At these energies, when photon counting, the charge generated in the silicon is close to the noise of the system.  
In order to be able to detect these low energy X-ray events, the system noise of the detector has to be minimised 
to have a sufficient signal-to-noise-ratio.  By using an EM-CCD instead of a conventional CCD, any charge that 
is collected in the device can be multiplied before it is read out and as long as the EM-CCD is cool enough to 
adequately suppress the dark current, the signal-to-noise ratio of the device can be significantly increased, 
allowing soft X-ray events to be more easily detected. 

This paper will look into the use of EM-CCDs for the detection of low energy X-rays, in particular the effect 
that using these devices will have on the signal to noise ratio as well as any degradation in resolution and 
FWHM that may occur due to the additional shot noise on the signal caused by the charge packet amplification 
process.  

Keywords:  IXO, OP-XGS, CCD, EM-CCD, L3, X-ray, FWHM, Excess noise factor. 

1. INTRODUCTION 

1.1  The International X-ray Observatory 
The International X-ray Observatory (IXO) is a collaboration between ESA, NASA and JAXA and is a large 
scale mission under review in the ESA Cosmic Vision and NASA decadal survey.  The telescope will be made 
up of a ~3 m2 optic and have a focal length of 20 m with the main instrument focal plane sitting at the end of a 
deployable structure that is ~13 m in length.  The telescope is due for launch in ~2022 and will be sent to a L2 
halo orbit. 

The Off-Plane X-ray Grating Spectrometer (OP-XGS) is a proposed instrument on IXO.  It is planned to be a 
spectrometer that will cover the 0.3 keV to 1 keV energy range, have an effective area >1,000 cm2 over this 
range and a resolution >3,000 (λ/Δλ).  It will use a series of modules of off-plane gratings (grating grooves 
parallel to the direction of incoming radiation) to disperse ‘soft’ X-rays away from the main focus of the 
telescope onto a dedicated CCD camera array arranged in a conical pattern.  The gratings will be housed on a 
tower and will extend 5.12 m from the focal plane creating a throw that is long enough to allow the X-rays to 
disperse over a large enough distance from the zero order to achieve the required resolution[1][2]. 
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2.3  Order separation requirement 
As discussed, the OP-XGS is planned to have a resolution of >3,000 across the energy range 0.3 keV – 1 kev.  
In order to achieve this, the OP-XGS will have to use several orders of dispersion[8].  The different orders of 
dispersed light are superimposed on the CCD array creating individual arcs per grating module.  The minimum 
size of energetic separation between photons incident at the same physical location on the detector will be ~200 
eV, as shown in Figure 7.  Due to this effect, the CCD must be able to discriminate between photo-peaks of 200 
eV separations across the instrument bandpass 0.3 keV to 1.0 keV. 

 

Figure 7.  Photon energy vs. displacement on the focal plane array for 2nd – 5th order reflection.  It shows the minimum 
energy separation between the orders occurring at the same position and so sets an order separation requirement on the 
detector. 

For a conventional CCD, if the readout noise of the device is optimised, this separation is easily achievable and 
has been demonstrated.  For an EM-CCD, an extra component of shot noise is introduced by the charge 
avalanche multiplication process and may cause degradation in the FWHM of the device and so it is possible 
that the requirement will be harder to achieve.  If at low gain the total shot noise found with the device follows 
the same trend as found with optical detection then it should be possible to minimise the FWHM by running the 
EM-CCD at low gain.  The gain will still need to be high enough to bring the X-ray events out of the noise, but 
low enough to work in the low combined shot noise regime. 

3. EXPERIMENT

An uncoated, back-illuminated, e2v CCD97 shown in Figure 8 was taken to the BESSY II synchrotron for 
testing at a variety of X-ray energies in the range 0.2 to 1.2 keV.  This facility was able to provide 
monochromatic photons with a controllable flux so that the device could be tested at a variety of energies and 
gains to look into the SNR improvement at different gains for a given energy.  Spectra could be created so that 
the FWHM of the data could be assessed and the modified Fano factor at different low gains could be probed.  
The device was operated at -120 °C in non-inverted mode and the output was readout at 41 kHz.  Images were 
acquired in full-frame, so that X-ray photons were incident during readout, reducing photon pileup and 
maximising the data collected per image. 

Figure 8.  Uncoated, back-illuminated e2v CCD97 
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Figure 12.  Modeled QE vs. against X-ray photon energy across the OPXGS energy band for an uncoated back-illuminated 
CCD. 

4.4.  The modified Fano-factor 
The modified Fano factor is a measure of how much extra noise the shot noise on the multiplication register 
adds to the system.  It is predicted to tend to 1.115, (1 + Fano factor) at high gain, but be smaller at lower gain 
(<10) following the behaviour of the excess noise factor with optical photons.  It can be found by taking the 
equation to calculate the FWHM of a Gaussian distribution,  ܯܪܹܨ ൌ ߪ2݈݊2√2 ൌ ߪ ߪ2.355 ൌ ටߪௗ௨௧ଶ  ܶሺߪ௦௧ଶ ሻ  ௗଶߪ  

and re-arranging to make the modified Fano factor, T, the subject of this equation the values can be calculated, 
where σreadout is the readout noise, σshot is the shot noise and σdark is the dark current in the device.  The results of 
this calculation are shown in Figure 13.   

 

Figure 13.  A plot comparing the modified Fano factor calculated from the data collected at BESSY (points) and the 
theoretical model developed from the EM-CCD Monte Carlo model (line) 

Using the FWHM taken from the noise peak (this is the readout noise of the system) and the FWHM from the 
X-ray photo-peak to calculate the combined shot noise of the system the modified Fano factor of the system was 
calculated.  The charge splitting of the X-ray events caused the data points to not be close enough to the line to 
verify the theory.  However, it does show that the modified Fano factor tends to a value lower than 2 at high 
gain and so shows the effect that the Fano factor has on the total shot noise of an EM-CCD system and the 
possible improvement expected in terms of FWHM. 

The greater distance seen between the theory and measured results at lower gain is expected, because the 
multiplied/amplified signal has a higher SNR, it is then easier to threshold the background noise out of the X-ray 
signal and collect a complete event more easily. Therefore the results achieved are closer to theory. 
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The values for the modified Fano factor still need to be verified, but these results clearly show that there is a 
definite dependence on gain with this signal in the low gain domain. 

4.5.  Order separation requirement results 

The distance in energy needed to be resolved between adjacent orders for the OP-XGS is a minimum of 200 eV.  
By looking at the data for 400 eV and 600 eV X-rays shown in Figure 14, it is possible to see if this separation 
requirement is achieved. 

 

Figure 14.  Histogram comparing position of 400 eV and 600 eV X-ray peaks.  These peaks are fitted with Gaussians 
(dotted lines) and also with what the Gaussian would look like if the device performed as well as was theoretically possible 
(solid lines). 

The 400 eV data show clear evidence of splitting and so a broadening of the peak, however, in the fitting of the 
Gaussian it is possible to ignore the extended effects of the split events.  The 600 eV events are very closely 
fitted to the Gaussian (dotted line) which indicates a lower level of splitting.  The dashed line Gaussians show 
that, while the peaks of the X-ray events are separate from each other, there is still a fair amount of cross-over 
that will confuse the data. 

To see if the modified Fano factor would help with the order separation, secondary Gaussians were created and 
superimposed on the plot (solid lines).  These show that the 400 eV X-ray peak has a lot of broadening away 
from theory, as would be expected for a low energy event in a device that wasn’t fully depleted.  The 600 eV 
theoretical Gaussian is much closer to the fitted Gaussian peak and so suggests that there is a lower level of 
splitting.  Some of the split events have been programmed out of the data as the plots were created using pixel 
summation over 5 pixels.  

The solid lines are clearly separated from each other and so achieve the order separation requirement that is 
needed in order to use EM-CCDs on the OP-XGS.  This will only be possible, however, with the use of a deep 
depletion device. 

5. CONCLUSIONS 

Preliminary exploration of the use of EM-CCDs to detect X-rays and their applicability for use as the readout 
devices for the OP-XGS on IXO has been completed.  A model has been presented for the excess noise of an 
EM-CCDs with soft X-rays at low gain and this has been tested with a campaign at BESSY.  The increase in the 
modified Fano factor with increasing gain was a specific target of this test campaign in order to analyse how the 
FWHM of the X-ray peaks could be minimised.  This is important in order for the EM-CCDs to be able to 
achieve the grating camera readout array order separation requirement. 

Due to the large number of split events and partial events, pixel summation had to be used in order to collect as 
much of each X-ray event as possible.  As pixels are added together the noise from each pixel is also added in 
quadrature.  This leads to a degradation of the FWHM due to an increase in noise and so this has to be taken into 
account when looking at what is theoretically possible.  When using a higher gain than 1 on the signal, the 
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equivalent readout noise is suppressed and so the addition of extra readout noise, due to running at readout rates 
up to 5 MHz, may have minimal effect. 

The pixel summation code had the desired effect at high energies where only a modest amount of pixel 
combination was necessary, however, at the lower energies the split events occurred over a much larger number 
of pixels due to absorption on the back surface and so larger summation schemes were necessary.  Event pile-up 
meant that it was not possible to sum over as large an area as would have been necessary to collect the entire 
split event.  Adjacent events would start to be included into the summation of the targeted event, leading to 
event confusion and a broadening to the X-ray peak towards higher energies. 

Based on the theoretically model, using a deep depletion EM-CCD that is back-illuminated and has no AR 
coating would allow X-ray peaks with more signal in single peaks to be produced that have the necessary 200 
eV separation and so meet the OP-XGS order separation requirement.  This could be further enhanced through 
on-chip binning.  EM-CCDs clearly make it possible to detect smaller signals with high detection efficiency, 
even with small gains and so should be considered for further the use on the OP-XGS on IXO. 
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